Despite its role in assembly, methionine 35 is not necessary for amyloid beta-protein toxicity.

نویسندگان

  • Panchanan Maiti
  • Aleksey Lomakin
  • George B Benedek
  • Gal Bitan
چکیده

An important component of the pathologic process underlying Alzheimer's disease is oxidative stress. Met(35) in amyloid beta-protein (A beta) is prone to participating in redox reactions promoting oxidative stress, and therefore is believed to contribute significantly A beta-induced toxicity. Thus, substitution of Met(35) by residues that do not participate in redox chemistry would be expected to decrease A beta toxicity. Indeed, substitution of Met(35) by norleucine (Nle) was reported to reduce A beta toxicity. Surprisingly, however, substitution of Met(35) by Val was reported to increase toxicity. A beta toxicity is known to be strongly related to its self-assembly. However, neither substitution is predicted to affect A beta assembly substantially. Thus, the effect of these substitutions on toxicity is difficult to explain. We revisited this issue and compared A beta 40 and A beta 42 with analogs containing Met(35)-->Nle or Met(35)-->Val substitutions using multiple biophysical and toxicity assays. We found that substitution of Met(35) by Nle or Val had moderate effects on A beta assembly. Surprisingly, despite these effects, neither substitution changed A beta neurotoxicity significantly in three different assays. These results suggest that the presence of Met(35) in A beta is not important for A beta toxicity, challenging to the prevailing paradigm, which suggests that redox reactions involving Met(35) contribute substantially to A beta-induced toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

Induction of methionine-sulfoxide reductases protects neurons from amyloid β-protein insults in vitro and in vivo.

Self-assembly of amyloid β-protein (Aβ) into toxic oligomers and fibrillar polymers is believed to cause Alzheimer's disease (AD). In the AD brain, a high percentage of Aβ contains Met-sulfoxide at position 35, though the role this modification plays in AD is not clear. Oxidation of Met(35) to sulfoxide has been reported to decrease the extent of Aβ assembly and neurotoxicity, whereas surprisin...

متن کامل

Neurotoxicity and oxidative stress in D1M-substituted Alzheimer's A beta(1-42): relevance to N-terminal methionine chemistry in small model peptides.

Small model peptides containing N-terminal methionine are reported to form sulfur-centered-free radicals that are stabilized by the terminal N atom. To test whether a similar chemistry would apply to a disease-relevant longer peptide, Alzheimer's disease (AD)-associated amyloid beta-peptide 1-42 was employed. Methionine at residue 35 of this 42-mer has been shown to be a key amino acid residue ...

متن کامل

The critical role of methionine 35 in Alzheimer's amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity.

Amyloid beta-peptide (1-42) [Abeta(1-42)] has been proposed to play a central role in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder associated with cognitive decline and aging. AD brain is under extensive oxidative stress, and Abeta(1-42) has been shown to induce protein oxidation, lipid peroxidation, and reactive oxygen species formation in neurons and synaptosomes, all...

متن کامل

A molecular switch in amyloid assembly: Met35 and amyloid beta-protein oligomerization.

Aberrant protein oligomerization is an important pathogenetic process in vivo. In Alzheimer's disease (AD), the amyloid beta-protein (Abeta) forms neurotoxic oligomers. The predominant in vivo Abeta alloforms, Abeta40 and Abeta42, have distinct oligomerization pathways. Abeta42 monomers oligomerize into pentamer/hexamer units (paranuclei) which self-associate to form larger oligomers. Abeta40 d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2010